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On long waves on a rotating earth 
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Department of Applied Mathematics, University College of North Wales, Bangor 

(Received 9 September 1964) 

General solutions are obtained for the long gravity wave equation from solutions 
of the wave equation in three dimensions. The method is applied to the theory of 
Tsunamis. It is also suggested that these waves are the cause of the shelf oscilla- 
tions observed at Guadelupe. 

1. Introduction 
The equations associated with the classical long wave theory have been given 

by Proudman (1953), but for convenience will be reproduced here. 
It is assumed that q, the fluid velocity, is independent of depth, that h, the sea 

depth, is constant and that the fluid is uniform. It is further assumed that varia- 
tions in the Coriolis parameter are negligible and the surface of the earth is 
sensibly plane. Clearly these are idealizations, but nevertheless a comparison 
can be made between the cases of zero and non-zero Coriolis parameter SZ and an 
indication obtained of the effect of the introduction of SZ into the more exact and 
complicated equations. 

The horizontal equation of motion is 

a s + R k x q = - g V g ,  at 

where q is the horizontal fluid velocity, g is the elevation of the free surface above 
its mean level, 0 the two-dimensional gradient operator, k unit vector vertically 
upwards and 6 t h e  Coriolis parameter (SZ = 2w0sina where oo is the angular 
velocity of the earth and a the north latitude). The continuity equation is 

1 K v.q = ---. 
h at 

It can be seen that a solution is given by 

where 

a 
at 

q = -VA-Q(kxVA) .  

If p is the density of the fluid, it  is fairly easily seen that 

(3) 

(4) 

(5) 

(6) 

Fluid Mech. 22 14 



210 LI?. G. Chambers 

represents the rate of creation of fluid. This can be rewritten in terms of A .  

(7) 

The velocity normal to a rigid surface must be zero. If the normal to the surface 
is n and s is measured along the surface, this boundary condition is 

General solutions of equation (5) (which may be termed the two-dimensional 
Proca equation) do not appear to have been given, but certain solutions will be 
obtained in this paper. It will be found convenient to write gh = c2 and 
Q2/(gh) = K2. 

2. Derivation of long gravity wave solutions from three-dimensional 
wave equation 

Let @ satisfy the three-dimensional wave equation 

and the boundary condition 

Let cos Kx$,(r, x )  dz, (11) 

m 

A,(r) = / sin Kqb0(r, z )  dz, 
- W  

where r is the horizontal radius vector. $e and $o are solutions of equations (9) 
subject to equation (10). It is easy to see from an integration by parts that 
Ae(r) and A,(r) satisfy equation ( 5 )  subject to equation (8) provided that the 
@ tend to zero as x tends to inhi ty .  Furthermore A,  is even in R and A,, is 
odd in K .  

As an example of the use of these expressions, consider the following problem. 
A mass pV, of fluid is liberated uniformly over the depth of the fluid at zero time 
and along the x axis. A physical discussion of this will follow later. 

Then 

where &(t) is the delta function and 6(r) is the two-dimensional delta function. 
It follows that 

whence 
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where H ( t )  is the Heaviside step function. Clearly the solution of equation (15) 
can be derived from 

A = /ym COB (Kz) $ dz, (16) 

where a2$ 1 a2+ v, 
c2 at2 

V2$ + a22 - - - = 6(r) 6(z)  H ( t ) ,  

and the solution is to represent an outgoing wave. The appropriate solution can 
be seen from Stratton (1941) to be 

V H ( t -  R/c) $ = -0 
4nh R ' 

where R2 = r2+z2. 

Applying the transformation (16) to the solution (18) 

V, O0 cos (Kz) H(t  - R/c)  
dz, A =-=so R 

using the even property. So 

It will be convenient to write c2t2- r2 = b2 and t* = t - r/c .  With this notation, it 
follows from equation (4 )  that 

Now the first term inside the curly bracket on the right of (21) becomes 

COB Kz 

The second term of (22) vanishes because the coefficient of s ( t - r /c )  vanishes 
when t = r/c, and so (22) becomes 

Clearly in the first term cos Kb may be replaced by unity, whence it follows that 

v, b cos Kz 
(KsEKb + -)] cosKb H(t* )  + ( c /b )  a@*)). C =  -([nzJ,, 2ngh -dz~( t* ) - c3 t  b3 

the term in 8(t - r/c)  vanishing for the same reason as before. On evaluation of 
a(VA)/at, it follows that 

sinKb+- r 2~2t2-r2 ____ cos Kb + Q k x  __ rcosKb -1 H(t*). 
ct2 b3 b ct 
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The formula for y and q for a non-rotating system are given from equations (23) 
and (24) by putting SZ (and K)  zero. Considering equations (23) and (24) it will 
be seen that the initial effect, represented by the term involving s ( t - r / c )  is 
unchanged. However, the behaviour of the 'tail' is different. If SZ is zero the 
shape of the tail is given by 

and if SZ is non-zero, that is, if rotation is taken into account, the shape of the 
' tail ' is given by 

b cos Kz KsinKb cosKb 
dz - c3t R 

As mentioned earlier, a physical interpretation may be obtained for this 
problem. (I am indebted to a referee for this suggestion.) When earthquakes take 
place, one possible manifestation is a sudden rising (or lowering) of the sea bed. 
In  effect this is equivalent to the creation (or destruction) of a certain volume of 
water. Such disturbances give rise to a particularly violent form of long wave, 
called a Tsunami. 

As pointed out previously, the rotation does not affect the initial peak. This is 
not surprising as the initial delta function merely represents the propagation of 
the sudden creation. It is in the 'tail' that a difference manifests itself, as time 
increases. It is stated in Magnus & Oberhettinger (1948) that 

- -  
and so for the tail 

< =  & h [ n 2 ~ O ( ~ r ) - ~ 2 ~ b  cos ~ Kz dz-c3t  bp+---)]. b3 
R (30) (KsinKb cOsKb 

If Sz is zero, then < tends to zero as t tends to infinity. On the other hand, if SZ is 

(31) 
K2V 
2n 

non-zero, 5 tends to 
-OKo(Kr) , 

which is finite. Now, the 'flat earth' assumption has been made here and so the 
details of this elevation are obviously not correct. However, the implication is 
that the elevation decays more slowly in the presence of a rotation than it does 
otherwise. 

If we consider the particle velocity as given by (29)' two features arise. First, 
there is a, fluid velocity which is normal to the radius vector to the point of fluid 
creation represented by the term involving k x r which except in the stages 
immediately after the arrival of the Tsunami is of the same order as the fluid 
velocity in the direction of the radius vector. Secondly, it can be seen that for 
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large times, greater than 0 - 1  say, after the arrival, the rotation causes a less 
rapid decay. The first term is O(t-3), the second and third are O ( k 2 )  and they only 
exist when there is rotation. 

3. Shelf oscillations at Guadelupe 
In  a paper dealing with the diffraction of long waves on a rotating earth in the 

presence of a semi-infinite barrier Crease (1956) suggested that were there a 
barrier of finite length-such as an island in mid-ocean, energy might be trapped 
in the form of a wave progressing round the barrier in a clockwise direction. 
Many approximations for the shape of an island spring to mind, such as a straight- 
line segment, or an ellipse but the properties of the solutions of the wave equation 
associated with such geometries are not really well known and so for the purpose 
of this paper, the island will be assumed to be of circular shape. It is to be hoped 
that the solution of problems associated with an island of such a shape will be 
representative of the solutions associated with islands of more awkward shapes. 

Assuming an exponential variation in time of eiuf it  can easily be seen that 
equations (7)  and (8) are equivalent to 

V2g+ k2g = 0, (32) 

where 

together with the boundary condition 

ac i -+y-  = 0, 
as an 

(33) 

(34) 

where y = fT/n = p-1 (0 < 1, < 1) .  (35) 

It is clearly more convenient to use, as is now possible, the physical quantity {, 
the surface elevation rather than the potential A .  

For the circle r = a, it  is convenient to express equation (32) in the form 

and equation (34) in the form 
i ag  ag 
a w  
---+yar = 0. (37) 

Consider first of all the free modes; i.e. wave configurations which can exist in 
the absence of any exciting waves. A solution of equation (36) which has no 
singularities outside the circle is 

g, = Y,(kr) e-in#. (38) 

The behaviour of this for r at infinity, apart from a r-* factor, is that of a standing 
wave. Thus no energy will be lost as no wave is being propagated out and energy 
will be trapped by the island. Substituting expression (38) in equation (37) 

or 

( i /a )  { - inY,(ka)} +ykYh(ka) = 0, 

kaYA(ka) +pnY,(ka) = 0. (39) 
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Thus for a field such as that given by equation (38) to exist, ka must obey equa- 
tion (39). Thus equation (39) in effect defines the values of cry theeigenfrequencies. 
It will be observed that if n is positive the elevation defined by (38) rotates with 
angular velocity (a/n). If n is positive, this is an anticlockwise rotation; if n is 
negative it is a clockwise rotation. Thus energy may be trapped either in a 
clockwise motion or an anticlockwise motion. It will be observed from equation 
(39) that the eigen frequencies for n = + N  are different from those associated 
with n = - N .  Furthermore, when p = 0 equation (39) reduces to Y,!Jka) = 0, 
and when p = 1 to Ya-l(ku) = 0. The roots of (39) will be between these. If the 
mth positive root of equation (39) is knrna, then the eigen frequencies associated 
with the system are cram, where 

(40) 

It will be noticed that a solution is possible for n = 0, that is, energy can be 
trapped in a mode which does not rotate with respect to the island. For this case 
equation (39) becomes Y;(ka) = 0, which is equivalent to 

girn = Q2 + ghkim. 

More generally equation (39) can be rewritten as 

which, putting yarn = crnm/Q, can be written as 

ynrn(Yirn- 1PPYA(P{yirn- I)*) +nK(Ayim- I)*) = 0, (42) 

where ,u = (Ra)/J(gh), equation (39) becoming 

q(p{yirn- 1)') = 0. (43) 

Shelf oscillations with periods of the order of half or quarter of an hour or so 
have been observed on Guaddupe, and mentioned by Munk (1 968) and Munk, 
Snodgrass & Tucker (1959). Such oscillations are generally thought to be caused 
by meteorological factors. Guadalupe is an island off Mexico in the Pacific Ocean 
with a latitude of 29'N, a greatest dimension of the order of lOOkm, and the 
order of the depth of the sea about it is 1OOOm. This corresponds to a charac- 
teristic velocity J(gh) of 99.05 mlsec. The Coriolis parameter 51 is 

2.2n/24 x 3600 cos 29' = 0.127 x 10-3sec-1. 

If Guadalupe is idealized into a circle of radius 50 km, the non-dimensional 
parameter ,u which measures the radius of the island is 

60 x 103 = 64 x 10-3. 
0.127 x 

99-05 

Consider first of all the non-rotating modes, n = 0. The first root of Y,(x) = 0 is 
2.20. so  

(44) 
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Substantially 2.2 x 103 
701 = 64 = 34.4, 

and so crol = 34.4 x 0-127 x 10-3sec-1, 

215 

= 4-35 x lO-3sec-l, (45) 

which corresponds to a period of about 22min. For the higher roots yon the 
periods will be correspondingly less. As only the order of magnitude is of interest, 
an approximate solution of equation (41) in the general case will be sufficient. 
It can easily be seen by dividing by ynm that if n is not large an approximate 
solution is given by the solution of 

Y A ( X )  = 0. (46) 

This is because ,u is small compared to unity and (y im-  1)4 is of the order of 
unity and (Q/a) is very small compared to unity in the range of interest. Thus if 
n = F m where m is not large, the eigenfrequencies are very nearly the same. 

In  particular for n = f 1, the first zero of Y;(x) is 3-68. This corresponds to 

= 7.44 x 10-3~ec-~, (47) 

corresponding to a period of about 14 min. For the higher roots the periods will 
be correspondingly reduced. 

Thus, the periods for the shelf oscillations obtained on Guadelupe are of the 
same order as those predicted by the idealized theory discussed in this paper 
(because of the idealizations involved any actual numerical agreement will be 
fortuitous) and it may well be that they are caused by a mechanism of this 
nature. If there is any disturbance of the relevant frequencies, caused meteoro- 
logically or otherwise, this will tend to be trapped by the island, and may involve 
a trapping of energy in waves progressing round the island in either direction, or, 
as indicated above, without any angular progression at all. This is borne out in 
the results of Proudman (1914) concerning a plane wave incident on a circular 
island. If the frequency associated with the plane wave or indeed with any 
incident field, is one of the eigenfrequencies associated with the circular island, 
resonance takes place and infinities occur in the reflected wave. 

I am indebted to Prof. J. Darbyshire of the Oceanography Department of the 
University College of North Wales and Dr J. R. Rossiter and Mr N. S. Heaps of 
the University of Liverpool Tidal Institute for most helpful discussions during 
the preparation of this paper. 
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